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CIRCULAR CYLINDER IN THE THEORY OF THERMOELAS
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INTRODUCTION

Elasticity with voids theory was presented |n [1]. Lin
approximation of this theory was present
same paper, a solution was given to the pro
pure beam bending. Independently
was proposed in the paper [3]. It can

problem for the plate with a hole
[5]. The problem for the pressure
[6]. In paper [7] it was shown that with
of the elasticity with voids theory, there is no polynomial
solution similar to th i
nant problem.

Analyticaland n

ticity are related to the description of the porous media,
in which the volume fraction of pores changes during the
external loading. These changes are not significant in
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lute values may affect the stress state of the ma-
ials. Moreover, the extended variant of the micro-dil-
tation elasticity with irreversible changes of the pores
volume fraction can be applied for the analysis of dam-
age (voids) accumulation in materials. Presented in this
paper numerical solution for the pressurized thick-walled
cylinder can be used for the validation of the micro-dila-
tation effects been identified in the experimental test with
micro-tubes made of porous materials, such as ceramics
or some type of polymers. It is also possible to apply the
micro-dilatation elasticity for the description of some type
of lattice auxetic metamaterials.

MATERIALS AND METHODS

In elasticity with voids theory, there is an additional kine-
matical variable ¢. The main relations of this theory were
introduced in [2]. We write: Q- void volume in current
configuration, Q, — full-body volume, Q - void volume in
reference configuration (Egs. 1-2):

p=2 (1)
Q¢
Pp =" 2)

We obtain (Eq. 3):
¢ =—(P~Py) ®)

The strain-displacement equations are the same as in
the classical elasticity theory. u, is a displacement vector,
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I
g is a strain tensor (Eq. 4):

1
gy =5 (W + ) )
Equilibrium equations (when there are no body forces)
(Eq. 5):
ij,j =0 (5)
To balance the microvolume of the material, the equilib-

rium equations for nonclassical stresses are added (Eq.
6):

hi.i +g= 0 (6)
here h, is the equilibrated stress vector, g is an intrinsic
equilibrated body force [12].

The constitutive relations of the thermoelasticity with
voids theory are (Eqgs. 7-9):

JU =10 + Z,USU + ﬁ(ﬂé}j - 3KU.T£IT (7)
hi =agQ,; (8)
g =—$¢ — B8 —a;AT) (9)
here 0, - stress tensor, 6=£kk6,.j — dilatation, A,y — Lame
parameters, (,§,a — additional material constants,
a, — coefficient of linear expansion (Eq. 10):

K=21+2u/3 (10)

Physical meaning of these constants was discuss
detail in [13] and [14-16]. It is convenient to intr,
coupling number (Eq. 11) [17]:

N = p*/(K$),N €0,1)

N =p%/((A+21)8)

COMSOL Multiphysics is used for n
Constitutive relations are written in Ge
differential equation (PDE) module. The bo
problem for the General form module is written in
divergent form. With boundary e ions on Q we get
(Eq. 13):

vr=pinQ—n-r="pond0,u=u’onaq, (13)
sor (Cauchy stress
ulk force vector, n is
of the boundary for the

tor of surface sources on the part
kinematical variables vector, u°

matic variables on the bound-

region 8Qp, Pis
of the boudary 0Q , u

lly converts the system of equa-
tior ), the weak formulation and solves it using the

fi method. It is convenient to use the matrix
form of the equations for the two-dimensional case (Egs.
14 :
Uq
u=|u; (14)
0]

011 012

r= (0'12 0'22) (15)
hy  hy
0

p= ( 0 ) (16)
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Figure 1: Cylinder geometry
RESULTS AND DISCUSSION

In classical elasticity theory when the stress state re-
maind the same for different values of r, (Eq. 18):
ro/1; = const (18)
Classical thermoelasticity solution can be found in [10]
(Egs. 19-20):

=20t {1 _oa(®) - (1-1
O = 2log(ro/Ti) {1 log (r) ré—r? (1 rz)

log (;—‘:)}

(19)
Op = %{1 — log (T?O) B ré"rif (1 * :_(z)
log (:—?)} %)
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Figure 2: Displacement boundary condition

stress states for different values of r,. Let’
stress distribution for different values of N whe

0.0327

0.037]
0.0287
0.026]
0.0247
0.0227

0.027
0.0187
0.0167]
0.0147
0.0127

0.017]
0.0087
0.0067
0.0047
0.0027

0.0027]

0.03%

m

two

o015 ‘o1 0005 0 0005 D01 0015 002 0025 003 0035 0.04

0; temperature boundary conditions: ¢) T_ =100,

ution of g, and o, for dimensionless radial distance for

different r, values. With the increase of r, stresses

also rise. The black curve shows a classical solution for

change the outer radius r,. In Fig. tri-  comparison.
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Figure 4: o, distribution for dimensionless radial distance; black — classical thermoelasticity, green — N=0.5,
blue — N=0.9; a) Outer radius r,=0.03, inner radius r=0.01; b) Outer radius r,=0.3, inner radius r=0.1
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Consider the change in the stress-strain state with the  From the plots, you can see that for different v,

ure 5 and Figure 6 distribution of o, and g, is shown for  aximum stresses increase with an incr
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increasing external radius r,. For all cases (18). In Fig-  \yhen (18) we obtain different stress distriplitions. The

different r, when N = const. For comparison, the black  terna| radius r,, but reach the asymptote for su

curve shows the classic solution. large values. Consider the function of microdilatationfor
different values. r, for (18). The distribution graphics are

ar in Figure 7. Microdilatation ¢ changes strongly across

o= e the radius when r is greater.
CONCLUSIONS

v The presented solution ibes the behavior of the

structure with micro-di i.e. with valuable changes

SGaierl it affects the materi-

pendences are not standard,

assical theories, where the
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results of this work are the following. The fi-

Figure 5: 06 distribution for dimensionless radial i |lution for the circular Cy"nder in the the-

distance; For all cases: r/r=3, N = 0.9; black — classical oelastic materials with voids is developed.

thermoelasticity SO/UﬁOﬂ,' thermoelasticity with voids It is sho that in e|asticity with voids theory when:

solutions: green — r,=0.3, blue —r,=0.03, red — r,=0.003 Jr=consts
r,. Scale effects appear only in a limited range of values.
Jg For very large or very small sizes, the radial stresses
108} will tend to constant values. The maximum stresses in-
crease with an increase of the external radius but reach
the asymptote for sufficiently large values. The classical
tion is the particular case of the considered theory,
en the coupling number tends to asero, i.e. when the
micro-dilatation effects are small and do not affect the
material’s stress state. Presented numerical solution for
the pressurized thick-walled cylinder can be used for the
validation of the micro-dilatation effects been identified
in experimental tests with micro-tubes made of porous
materials.
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